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This paper conducts a numerical study of four sets of aerodynamic control surfaces,
called grid fins, mounted on a full Launch Abort Vehicle geometry using a Cartesian Euler
Solver with embedded boundaries and adjoint-driven adaptive meshing. Since Cartesian
methods are insensitive to complex geometry, this makes them suitable for the highly
complex resulting configuration. Numerical results are compared against sub- trans- and
supersonic wind tunnel data in order to examine our ability to accurately predict the force
and moment increments afforded by these unconventional control surfaces. A database
of 1152 separate cases were ran including 12 different Mach numbers from 0.5 - 2.5, 15
different angle of attacks (0 - 15◦), and 6 different geometries. Overall, the simulation
data show good agreement with tunnel runs and similar rankings of configurations and
trends are found between wind tunnel and simulation results suggesting a large potential
for Cartesian Euler Solvers in accurately predicting force and moment increments for grid
fins on the Launch Abort Vehicle. In particular, pitching moment was predicted accurately
over the entire Mach-alpha space.

Nomenclature

M∞ = free-stream mach number
CA = axial force in missile axis
CN = normal force in missile axis frame
Cm = pitching moment in missile axis frame (with respect to c.g.)
α = angle of attack, deg
CP = pressure coefficient
E = total output error in functional value
J = functional value
e = relative error in functional value
ψ = adjoint variable
R = Euler residual terms
(+) = circumferential positioning of grid fins. first fin aligned w/ vertical
(×) = circumferential positioning of grid fins. first fin 45 degrees w/ vertical
LAV = Launch Abort Vehicle
AMs = LAV abort motors
ACMs = attitude control motors
CM = Crew Module

I. Introduction

Grid fins, also known as lattice fins, are unconventional aerodynamic control surfaces first proposed by
Belotzerkovsky et al.1 They consist of an outer frame which supports an inner lattice of intersecting
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planar surfaces or wings of small chord. Unlike planar fins, grid fins are aligned perpendicular to the flow
field to allow the air to pass through the lattice of grid cells. The truss structure formed by the lattice
fins is inherently strong, which allows the lattice walls to be extremely thin, reducing the weight and cost.
One of the main advantages of grid fins is that, due to their shorter chord lengths, at higher speeds, they
generate lower hinge moments than planar wings requiring smaller actuators to rotate them. Additionally,
the smaller chord and cascade-like flow reduces the likelihood of stall at high angles of attack relative to
conventional planar fins offering increased control effectiveness. To this point, grid fins have found numerous
uses on missiles and other endeavors.

The relative amounts of drag for both planar and lattice fins is also an important concern with regard
to launch abort vehicles. With careful design, grid fins can produce subsonic drag comparable to that of
planar fins. This is due to the thin profile of the lattice walls which create very little disturbance in the
flow passing through. In the transonic region, shocks can form in the cascade-like fins restricting the flow
through the lattice, significantly increasing the drag force. As the Mach number is increased to slightly faster
than M∞ = 1, a bow shock wave can form upstream of the grid fins. This bow shock worsens the effect
of the choked flow by forcing more of the flow around the fins, effectively acting as an obstacle to the flow
and reducing control effectiveness further. At higher supersonic speeds, the normal shock is swallowed and
attached shock waves form at the leading edges of the lattice at an oblique angle. As the Mach number is
further increased, the shock passes through the structure without intersecting it, resulting in greater control
effectiveness (compared to planar fins) in this regime.2

Figure 1. Schematic Orion LAV

It was shown numerically in Zeng, et al.3 that by using
swept back grid fins, the flow choking is reduced. As a result
for the Mach number range of 0.817-2.0, at zero angle of attack,
it was found that the sweptback grid fins produced 12% lower
drag than the unswept grid fins. Debiasi et al.4 showed similar
benefits for drag reduction of fins with sharp leading edges.

The Orion Launch Abort Vehicle (LAV) is a tower mounted
tractor rocket, designed to carry the Crew Module (CM) safely
away from the launch vehicle in the unlikely event of a catas-
trophic failure during launch and ascent. The overall design
of the vehicle can be seen in Fig. 1. The primary mechanism
for directional control of the vehicle are the eight solid-fueled
Attitude Control Motors (ACMs). Since the LAV trajectory
includes both nose-forward and heatshield-forward portions of
the flight path it is designed with very thin stability margins
and a study of deployable grid fins was commissioned.

Since the flow through the lattice structure of grid fins and
over the LAV itself is so complex, high-fidelity CFD tools are
required to accurately model the flow structure. The main
purpose of the current study was to examine the predictive
capabilities of NASA’s AERO package for these highly complex
flows. Adjoint-Based mesh adaptation was used to ensure grid
converged solutions optimized for surface loads. In this way,
the best possible answer could be computed with a given cell
budget. A large matrix of cases were simulated representing a
wide range of possible abort scenarios, all advanced to a steady-
state solution. The run conditions consisted of a Mach number
range of 0.5-2.5 (12 different Mach numbers), an alpha range
of 0− 15◦ (16 total), and 6 different geometries, comprising a total of 1152 separate cases. The geometries
simulated included a baseline configuration, two separate circumferential arrangements of unswept grid fins
(four fins total), two separate circumferential arrangements of swept fins (four fins total), and a separate
case with one isolated unswept grid fin. Loads were computed on 23 separate components of the LAV
including many of the components shown in Fig. 1 in addition to hinge moments on the fins. All cases were
run on the Columbia and Plaeides Supercomputers at the NASA Advanced Supercomputing Division. The
main objective of this investigation was to assess the predictive capability of the Cartesian Euler package
for determining aerodynamic load increments as compared to experimental results. While this study is
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primarily interested in predicting the grid-fin increments to axial force, normal force and pitching moment,
we also investigate the effectiveness of the swept-back fins at reducing drag over the unswept fins, especially
transonically and at moderately elevated angles of attack.

II. Methods

II.A. Geometry

The geometry used for the study was based on the “26aa” CFD watertight model representation of the Orion
LAV shown in Fig. 2. A few of the key components modeled in the geometry include the heatshield, abort
motors, feedline (or raceway), and the umbilical notch cutout. These can be found in Fig. 3. As a result of
these circumferential asymmetries, the configurations were simulated with no assumptions of symmetry.

Figure 2. 26aa LAV baseline configuration
(no fins)

A total of six different configurations were studied. The first
configuration used the baseline 26aa geometry with no grid fins at-
tached (seen in Fig. 2). The configurations employing the grid fins
are shown in Fig. 4. For all the cases, four fins are used which are
all spaced at 90 degrees. The (+) configurations align the fins at an
offset of 45 degrees with the Abort Motors (AMs) while the (×) con-
figurations align the fins directly aft of the (AMs) in the streamwise
direction. Each of the configurations shown was triangulated us-
ing ∼ 1.2 million triangles. The final configuration consisted of one
isolated unswept grid fin. This work considers only the unpowered
LAV. While power-on experimental data was taken for the fins in the
(+) configuration, corresponding data for fins in the (×) orientation
was not obtained in the experiment due to high load factors on the
grid fins from the Abort Motor jets. Fig. 3 shows a more complete
view of the abort motors, raceway, and umbilical notch cutout.

Figure 3. Baseline 26aa CFD model.
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(a) (+) Unswept (b) (+) Swept

(c) (×) Unswept (d) (×) Swept

Figure 4. LAV grid fins configurations. (a) represents the + configuration with the fins located at the compass points.
(b) (+) configuration with 22.5 degree swept grid fins. (c)(×) configuration with 90 degree circumferential spacing and
45 degree offset with from vertical (aligned with the abort motors). (d)(×) configuration with 22.5 degree swept fins.

(a) Unswept (b) Swept (c) Triangulation

Figure 5. Fin geometries considered. (a) CAD model unswept fin. (b) CAD model of swept fin with a sweep angle of
22.5 degrees relative to the unswept fin. (c) representative surface triangulation including ≈ 56, 000 triangles.

Fig. 5 displays both the swept and unswept CAD models of the fins along with the discretized surface
triangulation. The fins were meshed directly from the Pro Engineer CAD parts. However, the baseline
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26aa CFD ready triangulation was obtained by first generating an overset mesh grid system on a simplified
model, and then, from this using the surface integration tool, Mixsur,5 to generate a near watertight surface
triangulation. Gaps in the Mixsur-outputted Mixsur file were intersected with small geometric shapes to
achieve a water-tight geometry. The fins were meshed independently from the LAV baseline 26aa model and
subsequently appended to the 26aa without intersecting the aft portion of the LAV. Fig. 3 highlights a few
of the geometric details of the 26aa geometry.

II.B. Flow Solver

NASA’s AERO package is a three-dimensional compressible Euler solver suitable for CFD analysis of complex
geometries. The AERO package automatically generates an unstructured initial Cartesian volume mesh
around the triangulation using an embedded-boundary Cartesian mesh method.8 This is done by intersecting
the triangulation with an initial coarse volume mesh. Cartesian cut-cells are created at the Cartesian
mesh/triangulation junction. The treatment of these cut-cells are highlighted in Aftosmis et al.9 This
procedure effectively decouples the surface discretization from the volume mesh, and eliminates the manual
labor necessary to generate body-fitted structured meshes. The AERO package then refines this initial
coarse mesh in a manner described in the Mesh Adaptation section. The initial surface triangulation is
unchanged in all of the mesh refinement studies for all of the cases ran. The complexity of the fin geometry
in conjunction with the full LAV make this approach highly appealing.

The simulations for the current study were carried out using second-order, cell-centered, finite-volume
scheme with van Leer’s flux vector splitting. A multigrid accelerated five-stage Runge-Kutta scheme was
used to advance to steady-state. Further details on the numerical aspects and implementation of the AERO
package can be found in Aftosmis et al.10 Domain decomposition provides AERO with essentially linear
parallel scalability which allows for fast, automated, aerodynamic database generation. Simulations for a
representative case (single Mach number and alpha) were carried out with typically 12-2.9 GHz cores on the
Pleiades Supercomputer for ∼ 3− 4 hours for ∼ 6 million cells. 1152 cases in total were run in parallel over
the course of this study. Particular cases that resulted in poor convergence or unusually large discretization
errors in the functional were filtered out.

II.C. Mesh Adaptation

The AERO package has a mesh adaptation module that uses adjoint-weighted residual error estimates to
drive mesh adaptation for user selected outputs (such as normal force, axial force, pitching moment, etc.).
In this way, the mesh refinement procedure generates a mesh that reduces the discretization errors in the
outputs so that the influence of these errors on the output functional is below a specified error tolerance.
This meshing strategy is targeted at providing the best possible answer for a given cell budget (or error
tolerance).

II.C.1. Error Estimation

Total error in output functional value, E, can be defined as follows

E = Jexact − J(QH) (1)

where J represents the output functional of interest, QH is the flow solution satisfying the steady-state
three-dimensional Euler equations on mesh of average cell size H. Predicting E is difficult to do, even for
simple problems. Alternatively, one can estimate how a discrete evaluation of the functional J(QH) would
change if solved on a finer mesh, h. In this way, a relative error (e) is defined by

e = J(Qh)− J(QH) (2)

which can be graphically seen in Fig. 6.
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Figure 6. Discrete estimate of numerical error on a finer mesh of cell-size h

The goal in the error estimation procedure is to obtain a cell-wise estimate of this relative error (e(QH))
from the flow solution. Following the development in Nemec et al.,12 an expression for the functional on the
fine mesh can be obtained as a function of the functional on the coarse mesh in terms of the adjoint variable,
ψ, and the Euler residual terms.

J(Qh) ≈ J(QH)− (ψH
h )TR(QH

h )︸ ︷︷ ︸
Adjoint Correction

− (ψh − ψH
h )TR(QH

h )︸ ︷︷ ︸
Remaining Error

(3)

QH
h denotes a reconstruction of the flow solution from the coarse mesh to the fine (embedded) mesh. The

remaining error term in equation 3 can be used to determine a bound on the local error in each cell of the
embedded mesh.

ek =| (ψh − ψH
h )TR(QH

h ) | (4)

A more complete analysis of the adjoint formulation and its applications on complex geometries can be
found in Nemec et al.6,7

II.C.2. Adaption Strategy

The mesh refinement process is driven by equation 4. The goal of the adaption strategy is to minimize
the cost of the simulation. This is done by gradually increasing the mesh growth factor as the adaption
progresses. This approach follows the Worst things first strategy of Nemec et al.7 where the adaption
refines cells which contribute the most to error by limiting the mesh growth early on in the refinement. This
prevents excessive refinement of coarse meshes when the accuracy of the discrete solution is poor and, in
turn, requires only one solution of the flow and adjoint problems on an expensive mesh. As a result, the
adaption begins with relatively small growth rates early on and is gradually increased such that the final
adaption flags the most amount of cells for refinement and consists of the largest growth.

Most of the cases for the current study consisted of cases that tended to be unsteady and therefore,
require large amounts of resolution. The primary culprit for this unsteadiness usually lies in the wake region
with moderate error levels. As a result, the Worst things first strategy as applied to the current study,
refines most of the cells on the pressure side of the vehicle first since they have relatively larger errors early
on in the adaption. This avoids over-refinement of the unsteady wake until late in the adaption yielding
the best answer for a given cell budget. This strategy has been proven successful for many previous CEV
Aerosciences Project reports and used extensively in previous simulations involving complex geometries.
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The functional used for the current study is a linear combination of normal force and axial force over the
entire model

J = CN + 0.2CA (5)

After experimenting with several functional formulations in Nemec et al.7 for a similar LAV geometry,
it was determined that equation 5 results in good mesh convergence for both forces and moments. Fig. 7
shows the mesh adapted grids for a subsonic and supersonic case.

(a) Typical subsonic mesh (b) Typical supersonic mesh

Figure 7. Adapted meshes for swept geometry. Fig. (a) shows a typical mesh of 7.6 million cells after 15 adaptation
cycles. This case was run at M∞ = 0.7 at α = 10 degrees. Fig. (b) shows a typical supersonic case for a typical mesh
size of 7.4 million cells and 15 adaptation cycles. This case was simulated at M∞ = 1.8 and α = 10◦.

The final refined mesh for the isolated grid fin configuration can be seen in Fig. 8.

Figure 8. Fin only configuration; mesh shown after 15 adaptions. M∞ = 1.3, α = 10 degrees.
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III. Results

III.A. Isolated Grid Fin Results

A single, isolated, unswept grid fin was simulated for 12 different Mach numbers (0.5-2.5) and an alpha range
of 0− 15◦ (16 total). Fig. 9 depicts Mach contours of the singular fin for three different Mach number cases.
For the Mach=0.95 case, normal shocks form within the lattice structure creating a large drag rise which
can be seen in Fig. 10 (a). As the flow is restricted further in the Mach=1.1 case, the bow shock can be seen
in Fig. 9. As the freestream flow is increased further, the shock is swallowed and attached oblique shocks are
formed which act to decrease drag. Fig. 10 (b) displays the pitching moments about the base of the grid fin.

Figure 9. Isolated grid fin configuration for 3 different Mach numbers all computed at 0◦ angle of attack. The contours
are colored by square root of Mach number.

(a) Drag Coefficient (b) Pitching Moment w.r.t. hinge line

Figure 10. Single grid fin computations for Drag Coefficient and Pitching Moment Coefficient for 0, 5, and 15◦ angle of
attack. The transonic drag rise due to the flow choking inside the lattice structure can be clearly seen.
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III.B. Aerodynamic Loads: General Trends

Fig. 11 shows several final meshes of a few cases in the total run matrix along with CP contours on the
surface. Fig. 12 shows mach contours of the same selected run parameters. The final meshes for the runs
contained between 7 to 8 million cells. Most of the simulations ran for 10 adaption cycles and all started
with the same initial mesh containing 4,000 cells.

Figure 11. Final adapted meshes for selected LAV cases. 15 adaptation cycles were used for all cases with each case
having ≈ 8 million cells. surface CP contours are also shown.
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Figure 12. Mach number contours for selected flow conditions of LAV geometry. The final grids contained between 7
and 8 million cells.

Fig. 13 displays numerical results for axial force for the 4 configurations at three different flight regimes.
The simulation results are shown against the wind tunnel results. Each plot shows a fins on and fins off case.
The simulation results over-predict the subsonic and transonic drag rise, both with and without fins present.
At higher supersonic mach numbers (not all shown), axial force is predicted accurately by the simulation.
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Figure 13. Axial force coefficients vs. angle of attack for all of the configurations. for the three flight regimes: subsonic,
transonic, and supersonic.

Likewise, simulation results for Normal Force are plotted for the 4 configurations in Fig. 14.
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Figure 14. Normal Force coefficients vs. angle of attack for all of the unswept and swept configurations. The configu-
rations are shown for the three flight regimes: subsonic, transonic, and supersonic.

Fig. 15 displays baseline (no grid fins) comparisons for normal force, axial force, and pitching moment
(about the center of gravity) at 5, and 10 degrees angle of attack. The axial force rise at subsonic and
transonic speeds is over-predicted by the CFD results, while at speeds Mach > 1, strong agreement is found
between CFD and experiment. Normal Force, and Pitching Moment comparisons match over the entire
range.
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Figure 15. Baseline 26aa Force coefficients vs. Mach number for 5◦ and 10◦ angle of attack. The CFD simulation tends
to over-predict axial force in experiment at subsonic speeds. However, strong agreement is seen at supersonic speeds.

Fig. 18 in the appendix displays axial force and pitching moments for all fin configurations at 10 degrees
angle of attack. The over-prediction of axial force for subsonic, and transonic regimes remains consistent
across all of the configurations.

Table 1 displays percent differences in flow coefficients between CFD and experiment. The CFD results
over-predict axial force. At higher Mach numbers, the axial force differences between the two geometries is
reduced. Similar trends are shown for pitching moments. These differences decrease substantially for Mach
numbers above 1.

Table 1. Comparison of Aerodynamic Load differences between the simulation and the wind tunnel data for the
baseline configuration with no fins. Tabulated maximum differences from α = 0 − 15 degrees. The increments are
computed by 100 ∗ ((Simulation− Experiment)/Experiment).

M∞ ∆CA ∆CN ∆Cm

0.5 ∼ 45 < 20 < 16
0.7 ∼ 50 < 4.5 < 20
0.9 ∼ 57 < 6.0 < 23
1.1 ∼ 6.25 < 6.25 < 9.0
1.3 ∼ 11 < 4.5 < 11
1.8 ∼ 6.4 < 11 < 7
2.0 ∼ 4.2 < 8.6 < 30
2.5 ∼ 4.7 < 14 < 27

Pitching moment coefficients are shown in Fig. 16 for the 4 configurations. Improvement is seen between
the computational and experimental results. Importantly, the pitching moment increments due to the fins
are in good agreement with the experiment.
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Figure 16. Pitching moment coefficients vs. angle of attack for all of the configurations. The configurations are shown
for the flight regimes: subsonic, transonic, and supersonic.

III.C. Fin Stability Augmentation

The total stability augmentation of the fins constituted large benefits in pitching moment at 10 degrees angle
of attack. Table 2 gives a complete listing of fin increments in pitching moment at various Mach numbers.
The table entries represent the percentage increase in pitching moment for the various configurations.
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Table 2. Simulation prediction of pitching moment increase from baseline (no fins). The entries of the table represent
100 ∗ ((Baseline + fins− Baseline)/Baseline) at α = 10 degrees.

M∞ 0.5 0.7 1.1 2.5
(+) unswept ∼ 224.9 ∼ 123.0 ∼ 74.5 ∼ 160.5
(+) swept ∼ 273 ∼ 146 ∼ 138.5 ∼ 149.6
(×) unswept ∼ 263 ∼ 150 ∼ 107.6 ∼ 173
(×) swept ∼ 332.6 ∼ 176 ∼ 165.6 ∼ 160

Overall, the fins provide between 74 to 330 % increase in pitch. All configurations show a similar trend of
maximum pitch increase at Mach = 0.5, a slight decrease in pitch stability in the transonic range, and then
a small increase in pitch stability at larger Mach numbers. At subsonic and transonic Mach numbers, the
swept fins produce slightly more control stability relative to the unswept fins, while at higher supersonic Mach
numbers the benefit is nearly indistinguishable.A similar result is found with regard to the configuration. At
the low and transonic Mach numbers, the (×) configuration produces slightly more control authority than
the (+) configuration, while at higher Mach numbers the difference is small.

Fig. 17 shows a comparison of experimental and CFD results across a Mach number range of 0.5 to 2.5 at
α = 3◦. The relative rankings of the configurations are the same between both experiment and simulation.
Interestingly, in both experiment and simulation, the (×)-swept configuration leads in pitching moment up
to M∞ = 2.0, but is overtaken by the (×)-unswept at higher Mach numbers. The pitching moment increase
in the transonic range is predicted closely by the AERO package. Over the complete range of Mach numbers,
both experiment and CFD simulation predict a slight drag reduction as a result of the swept fins. The benefit
seems to diminish at larger Mach numbers.
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Figure 17. Pitching moment, Axial Force, and Normal Force coefficients vs. Mach number. Similar increments and
consistent rankings among configurations are shown between CFD and experiment for 3◦ angle of attack.

III.D. (+) vs. (×) Configuration

Table 3 summarizes the increments as percentage differences from the baseline configuration due to the
different fin configurations for the unswept fin cases at α = 10◦. The (×) configuration provides slightly
more pitch stability with comparable drag margins for the Mach range examined. Table 4 represents this
same data for the swept fins.
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Table 3. Simulation prediction of Axial Force, Normal force, and Pitching moment for the unswept fin cases. Increments
from baseline (no fins) are shown. The entries of the table represent (Baseline with fins - Baseline) for the case of
unswept fins. α = 10 degrees.

M∞ Config ∆CA ∆CN ∆Cm

0.5 (+) ∼ 35.7 ∼ 35.2 ∼ 224.9
(×) ∼ 34.4 ∼ 43.4 ∼ 263

0.9 (+) ∼ 44.2 ∼ 25.4 ∼ 60.1
(×) ∼ 35.6 ∼ 28.3 ∼ 72.9

1.1 (+) ∼ 46.1 ∼ 27.6 ∼ 74.5
(×) ∼ 45.2 ∼ 39.2 ∼ 107.6

2.0 (+) ∼ 25.9 ∼ 38.8 ∼ 149.0
(×) ∼ 24.2 ∼ 40.5 ∼ 160.2

2.5 (+) ∼ 23.9 ∼ 38.7 ∼ 160.5
(×) ∼ 25.1 ∼ 42.1 ∼ 173.3

Table 4. Simulation prediction of Axial Force, Normal force, and Pitching moment for the swept fin cases. Increments
from baseline (no fins) are shown. The entries of the table represent (Baseline with fins - Baseline) for the case of
swept fins. α = 10 degrees.

M∞ Config ∆CA ∆CN ∆Cm

0.5 (+) ∼ 34.5 ∼ 41.6 ∼ 273
(×) ∼ 35.9 ∼ 45.7 ∼ 332.6

0.9 (+) ∼ 26.7 ∼ 36.2 ∼ 97.3
(×) ∼ 27.9 ∼ 40.2 ∼ 119.0

1.1 (+) ∼ 43.0 ∼ 44.5 ∼ 138.5
(×) ∼ 35.6 ∼ 52.2 ∼ 165.6

2.0 (+) ∼ 20.5 ∼ 38.8 ∼ 159.7
(×) ∼ 19.8 ∼ 41.7 ∼ 173.1

2.5 (+) ∼ 19.9 ∼ 32.5 ∼ 149.6
(×) ∼ 20.2 ∼ 35.6 ∼ 159.9

For the swept cases, the (×) configuration provides slightly higher stability with comparable axial force
values to the (+) configuration.

III.E. Effect of Swept Fins

Table 5 shows the effect on axial force for both the swept and unswept cases. Consistent with the predictions
in Zeng et al.3 and Debiasi et al.,4 axial force reductions are seen in the transonic, and to a lesser extent in
the low supersonic regime.
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Table 5. AERO prediction of axial force benefit of swept fins for (+) configuration cases. Percentage increments from
baseline (no fins) are shown. The entries of the table represent 100*(Baseline with fins - Baseline)/Baseline. α = 3
degrees.

M∞ Sweep ∆CA

0.5 Unswept ∼ 36.6
Swept ∼ 35.0

0.9 Unswept ∼ 43.3
Swept ∼ 36.5

1.1 Unswept ∼ 38.2
Swept ∼ 31.9

2.0 Unswept ∼ 26.9
Swept ∼ 21.6

2.5 Unswept ∼ 24.8
Swept ∼ 20.4

Table 6 shows aerodynamic coefficients for the swept and unswept fins for the (+) configuration. For
subsonic and transonic regimes, the swept fins provide the highest stability (as measured by pitching mo-
ment), while providing lower drag increases than the unswept cases. Similar trends are found in Table 7 for
the (×) configuration cases.

Table 6. Simulation prediction of Axial Force, Normal force, and Pitching moment for (+) configuration cases.
Percentage increments from baseline (no fins) are shown. The entries of the table represent 100*((Baseline with fins -
Baseline))/Baseline. α = 10 degrees.

M∞ Sweep ∆CA ∆CN ∆Cm

0.5 Unswept ∼ 35.8 ∼ 35.2 ∼ 224.9
Swept ∼ 34.6 ∼ 41.6 ∼ 273.7

0.9 Unswept ∼ 44.2 ∼ 25.4 ∼ 60.1
Swept ∼ 26.7 ∼ 36.3 ∼ 97.4

1.1 Unswept ∼ 46.1 ∼ 27.5 ∼ 74.5
Swept ∼ 43.1 ∼ 44.5 ∼ 138.5

2.0 Unswept ∼ 25.9 ∼ 38.8 ∼ 149.0
Swept ∼ 20.5 ∼ 38.8 ∼ 159.7

2.5 Unswept ∼ 23.9 ∼ 38.7 ∼ 160.5
Swept ∼ 19.9 ∼ 32.5 ∼ 149.6

18 of 21

American Institute of Aeronautics and Astronautics



Table 7. Simulation prediction of Axial Force, Normal force, and Pitching moment for (×) configuration cases. Percent-
age increments from baseline (no fins) are shown. The entries of the table represent 100 ∗ (Cw/fins−Cbaseline)/Cbaseline.
α = 10 degrees.

M∞ Sweep ∆CA ∆CN ∆Cm

0.5 Unswept ∼ 34.5 ∼ 43.38 ∼ 263.3
Swept ∼ 35.9 ∼ 45.7 ∼ 332.6

0.9 Unswept ∼ 35.6 ∼ 28.3 ∼ 72.9
Swept ∼ 27.9 ∼ 40.2 ∼ 119.0

1.1 Unswept ∼ 45.2 ∼ 39.2 ∼ 107.6
Swept ∼ 35.6 ∼ 52.2 ∼ 165.6

2.0 Unswept ∼ 24.2 ∼ 40.5 ∼ 160.2
Swept ∼ 19.8 ∼ 41.7 ∼ 173.1

2.5 Unswept ∼ 25.1 ∼ 42.1 ∼ 173.3
Swept ∼ 20.2 ∼ 35.6 ∼ 159.9

IV. Conclusion

A total of 1152 separate cases were simulated at 12 different Mach numbers from 0.5 - 2.5, 15 different
angles of attack from 0 - 15◦, and six different configurations using a cut-cell Cartesian grid approach with
embedded boundaries. Adjoint-driven mesh refinement was used to provide a grid system optimized for
surface loads of interest given a reasonable cell budget. Simulations were generally in good agreement with
the wind tunnel data suggesting accurate prediction of the load increments due to the fins using the adjoint-
driven grid refinement with less than 8 million cells per case. Similar trends were seen in the transonic regime
and the ranking of configurations was consistent. Notably, pitching moment and normal force is in excellent
agreement across the database, while axial force is in good agreement to experiment with some tendency to
over-predict the experiment in the subsonic regime. Overall, the swept fins show highest pitching moment
benefit for both the (+) and (×) configurations in both the simulation and the experiment. Preliminary
results show that the (×) configuration provides a slight increase in stability in subsonic and transonic flight.
Future studies will need to look at the aerodynamic effect and hinge moments of the plumes impinging upon
the fins during LAV powered flight.
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Appendix

Figure 18. Force coefficients vs. Mach number. All fin configurations are shown for 10◦ angle of attack. The over-
prediction of axial force for subsonic, and transonic regimes remains consistent across all configurations.
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